is quest	ion paper contains 3 printed pages]
	Roll No.
No. of C	Question Paper: 2048
nique Pa	per Code : 32341303 GC-3
ame of th	ne Paper : Computer Networks
ame of th	ne Course : B.Sc. (H) Computer Science (CBCS)
emester	: III
Duration:	3 Hours Maximum Marks : 75
	(Write your Roll No. on the top immediately on receipt of this question paper.)
	Part A is compulsory and carries 35 marks.
	Attempt any four questions from Part B.
	Part A
1. (a)	Name and state the two types of line configuration.
(b)	Assume five devices are arranged in a mesh topology. How many ports are needed fo
	each device ? How many cables are needed in this topology ?
(c)	What is the difference between data element and signal element?
(d)	What are the parts of a URL ? Give an example.

(e)

(f)

(g)

State optimality principle.

What is the use of Urgent Pointer in a TCP header?

What is the purpose of options field in an IP Header? Explain any two options. 3 P.T.O.

- (h) State count to infinity problem. Give an example.
- (i) What is QAM? Give the constellation diagram for 64 QAM.
- (j) What is the purpose of using Guard Bands in multiplexed channels?
- (k) What is the significance of twisting in twisted-pair cables?
- (1) What is Discrete Multitone technique?
- (m) What is flow control? How is it handled at data link layer?
- (n) Which layer in the OSI model perform the following services?
 - (i) Translation
 - (ii) Network virtual terminal
 - (iii) Synchronization.

Part B

- 2. (a) Explain layered OSI model, stating the functionality of each layer.
 - (b) Explain the concept of self-synchronization in reference to digital signals.
 - (c) Explain the basic difference between a hub, bridge and a switch.
- 3. (a) What is subnetting? A network on the internet has a subnet mass of 255.255.240

 What is the maximum number of hosts it can handle?
 - (b) Give the structure of TCP Header. Discuss the purpose of six one-bit flags.
 - (c) Why is header checksum of an IP packet computed at every hop from source destination?

(a)	Describe the binary exponential back off algorithm.
(b)	Explain the multimode technique used for propagation of light in optical fibres.
(c)	What are the differences between Packet switching and circuit switching?
(a)	What is the Nyquist sampling rate for a bandpass signal with bandwidth of 300 kHz with lowest frequency as 100 kHz.
(b)	A bit string needs to be transmitted at the data link layer. What is the string transmitted
	after bit stuffing if the original bit string is 01111011111101.
(c)	Explain the two basic approaches that use the concept of pipelining at data link
	layer.
(a)	What is the result of applying the following schemes on sequence 111000000000000 ?
	Assume that before arrival of this signal, the non-zero signal level has been positive. 4
	(i) B8ZS
	(ii) HDB3
(b)	16 bit messages are transmitted using a hamming code. How many check bits are needed
	to ensure that the receiver can detect and correct single bit errors? Show the bit pattern
	transmitted for the message 1101001100110101.
(c)	Write a short note on any one of the following:
	(i) WWW
	(ii) DNS.